Abelian groups with a vanishing homology group
نویسندگان
چکیده
منابع مشابه
VANISHING HOMOLOGY OVER NILPOTENT GROUPS i
Let rr be a nilpotent group and let M be a 77-module. Under certain finiteness assumptions we prove that the twisted homology groups H .(77, M) vanish for all positive i whenever H (n, M) = 0. The purpose of this note is to prove the following vanishing theorem: (1) Theorem. Let rr be a finitely generated nilpotent group, and let Al be a rr-module which is finitely generated over Z[rr]. Assume ...
متن کاملReflexive Group Topologies on Abelian Groups
It is proved that any infinite Abelian group of infinite exponent admits a non-discrete reflexive group topology. Introduction For a topological group G, the group G of continuous homomorphisms (characters) into the torus T = {z ∈ C : |z| = 1} endowed with the compact-open topology is called the character group of G and G is named Pontryagin reflexive or reflexive if the canonical homomorphism ...
متن کاملImposing pseudocompact group topologies on Abelian groups
The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, m(α) ≤ 2. We show: Theorem 3.3. Among groups of cardinality γ, the group ⊕γQ serves as a “test space” for the availability of a pseudocompact group topology in this sense: If m(α) ≤ γ ≤ 2 then ⊕γQ admits a (necessarily connect...
متن کاملOn Abelian group representability of finite groups
A set of quasi-uniform random variables X1, . . . , Xn may be generated from a finite group G and n of its subgroups, with the corresponding entropic vector depending on the subgroup structure of G. It is known that the set of entropic vectors obtained by considering arbitrary finite groups is much richer than the one provided just by abelian groups. In this paper, we start to investigate in mo...
متن کاملGrothendieck Groups of Abelian Group Rings
Let R be a noetherian ring, and G(R) the Grothendieck group of finitely generated modules over R. For a finite abelian group n, we describe G(Rn) as the direct sum of groups G(R’). Each R’ is the form RI<,,, I/n], where n is a positive integer and Cn a primitive nth root of unity. As an application, we describe the structure of the Grothendieck group of pairs (H. u), where His an abelian group ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1976
ISSN: 0022-4049
DOI: 10.1016/0022-4049(76)90031-1